Robust scaling in fusion science: Case study for the L-H power threshold
نویسندگان
چکیده
In regression analysis for deriving scaling laws in the context of fusion studies, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to fusion data. More sophisticated statistical techniques are available, but they are not widely used in the fusion community and, moreover, the predictions by scaling laws may vary significantly depending on the particular regression technique. Therefore we have developed a new regression method, which we call geodesic least squares regression (GLS), that is robust in the presence of significant uncertainty on both the data and the regression model. The method is based on probabilistic modeling of all variables involved in the scaling expression, using adequate probability distributions and a natural similarity measure between them (geodesic distance). In this work we revisit the scaling law for the power threshold for the L-to-H transition in tokamaks, using data from the multi-machine ITPA databases. Depending on the model assumptions, OLS can yield different predictions of the power threshold for ITER. In contrast, GLS regression delivers consistent results. Consequently, given the ubiquity and importance of scaling laws and parametric dependence studies in fusion research, GLS regression is proposed as a robust and easily implemented alternative to classic regression techniques. PACS numbers: 02.50.Cw, 02.40.Ky, 52.55.Dy Robust scaling in fusion science: Case study for the L-H power threshold 2
منابع مشابه
Robust regression on noisy data for fusion scaling laws.
We introduce the method of geodesic least squares (GLS) regression for estimating fusion scaling laws. Based on straightforward principles, the method is easily implemented, yet it clearly outperforms established regression techniques, particularly in cases of significant uncertainty on both the response and predictor variables. We apply GLS for estimating the scaling of the L-H power threshold...
متن کاملApplication of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملTHE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL
The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملDelay Dependent H∞ Based Robust Control Strategy for Unified Power Quality Conditioner in a Microgrid
This paper proposes a novel robust control scheme based on delay-dependent H∞for unified power quality conditioner (UPQC) in a microgrid under the influence of the delay and parameter uncertainties. A new UPQC model considering the effects of the delay and parameter uncertainties is established. Then, the H∞ controller is designed based on the cone complementarity linearization (CCL) algorithm....
متن کامل